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Abstract
Current approximation management approaches establish
the correlation between approximate application configu-
rations and overall quality outcomes and resource require-
ments through off-line training. At runtime, an approxima-
tion manger uses the resulting profiles to select an appropri-
ate configuration. The time needed for the training phase of
these largely black box approaches can range from hours to
even days depending on the size of the configuration search
spaces. Training would have to be repeated when porting
an application to a new platform, or when executing in un-
known environments, making the approach impractical in
many cases. Another drawback of the black box approach is
the lack of support for application users to express quality
preferences for different aspects of an application, which
together determine the subjective overall user experience.
This paper introduces RAPID, a framework for writing

a class of approximate applications where the application
structure is exposed and utilized. Structural information is
used (a) by the developer to significantly speed-up the con-
figuration training phase, and (b) by the application user
to express relative preferences of different aspects of an ap-
plication. RAPID formulates configuration selection as an
integer programming problem that optimizes quality while
respecting resource budgets. Experimental results on six dif-
ferent applications show the benefits of leveraging structural
information in approximation management.

1 Introduction
Approximations and redundancies allow mobile and dis-
tributed applications to produce answers or outcomes of
lesser quality at lower costs. This paper introduces RAPID1,
a new programming framework and methodology for de-
veloping approximate applications. Existing strategies use
applications mainly as black boxes, then execute and mea-
sure applications under different approximation selections[3–
5, 7, 9]. The training phase is done off-line, i.e., before appli-
cation deployment. Configurations are represented by a set
of variables whose values can be changed during execution.
There are three main concerns about existing approaches.

Scalability: The total number of configurations can grow
exponentially in the size of the application as the number of
1For Redundancy, Approximation, Preferences, Implementation, Dependen-
cies; the cornerstones of our approach.

configurable components increases. As a results, the training
phase can be extremely expensive since all data points in
the configuration space have to be covered (e.g., [8] reports
training times of over 64 hours).

Dependencies: Many applications have dependencies between
configurable components. Certain combinations of these
component values may not be valid either due to data depen-
dencies or for quality concerns. A straightforward alternative
to filter out invalid configurations is through profiled trade-
offs, however this requires these undesirable configurations
to be included in the training set.

User Involvement: Current work assumes each application
comes with a fixed or commonly accepted QoS metric. How-
ever, the notion of quality can be highly subjective in practice.
Users need a way to express their particular application qual-
ity preferences without needing to know complicated details
within the "Black-Box".

In this paper, we explore how structural knowledge of the
application can mitigate or even eliminate the weaknesses
and deficiencies listed above. Structural information reveals
correlations between the components (knobs), significantly
reducing the feasible configuration space. Training this com-
pressed configuration space can be further optimized by
only executing representative configurations which allow the
reconstruction of the full search space. In addition, the struc-
tural composition of applications can be the foundation of
a user specified quality metric that expresses preferences
among application aspects.

2 The RAPID Framework
RSDG. RAPID uses the Redundant Services Dependence
Graph as its main representation of an application’s struc-
ture. The RSDG is a directed graph with node and edge
weights [6]. Developers describes the structure information
of the application by providing the configurable components
(nodes) and their dependencies (edges). Weights represent
the cost and QoS contribution of a particular node. Cost and
initial quality weights are automatically generated through
training, QoS weights can be customized later by the user.
As a result, RSDG determines whether a configuration is
valid and the estimated cost and QoS for that configuration.
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Figure 1. Overview of the RAPID Framework.

RAPID. Figure 1 shows the basic structure of the RAPID
framework. RAPID takes the input program along with the
RSDG specified by developers to run a full training on all
configurations. It then calculates a small training set, the Rep-
resentative Set, RS, representing the minimum training set
when re-training is required. RS starts with only the configu-
rations with the highest and lowest cost, and iteratively adds
a new configuration until a pre-defined cost model accuracy
is reached. The next configuration with the highest potential
to improve the accuracy is selected. This set allows a reduced
training phase that is able to reconstruct the entire configu-
ration space and its profiles at significantly reduced runtime
overheads. Before application execution, users customize
QoS by providing relative preferences of application services
and their approximations through updating the RSDG qual-
ity weights. RAPID optimizes the customQoS under resource
budget. It periodically monitors the runtime behavior and
reconfigures if necessary.

3 Experimental Evaluation
We evaluate the benefits of leveraging the structural informa-
tion in approximation through six applications: three com-
monly used Parsec Linux benchmarks [1] (Swaptions, Ferret,
and BodyTrack), two mobile Android applications devel-
oped with RAPID (NavApp: car navigation, VideoApp: video
streaming), and one RAPID embedded application (FaceDe-
tection: image processing running on Nvidia TX-1 Board [2]).
In Fig 2a, the black bar represents the total required training
time using a black-box approach where all combinations
of component settings are considered valid. The gray bar
shows the time after compressing the search space through
dependencies, and the final green bar shows the time for
only training the RS. On average, training times were re-
duced by up to 92%. Fig 2b shows the final QoS loss of four
benchmarks using the cost model constructed by the three
strategies, with 4.9% on average. In summary, RAPID suffers
from minor QoS loss compared to other strategies but has
significantly lower training overheads.

(a) Training Time Reduction (b) QoS Loss

Figure 2. Evaluation of RAPID

Figure 3. RAPID Runtime and Custom QoS in NavApp. Text
above the end of each bar: “X” - failure (exceeds budget).
“Arrives(n%)” - completes the mission with n% of budget.

4 Runtime and Custom QoS
To evaluate the runtime control and the ability of supporting
custom QoS, we also performed a series of experiments for
each application. Due to space limitations, we only show
in Figure 3 experimental results for NavApp, the mobile
navigation application. The overhead of RAPID is below
1.5% on all applications in terms of execution time or energy.

5 Conclusion and Discussion
RAPID is the first system that explicitly represents approx-
imations and their dependencies, and optimizes the appli-
cation behavior in response to user preferences and energy
budgets. Having the structure of applications, the required
training for constructing the cost model becomes easy and
efficient, which enables the application to be quickly pro-
filed when being ported to unknown environments, suffering
only a small QoS loss compared to a fully re-trained strategy.
RAPID dynamically reconfigure to handle the runtime uncer-
tainty including input dependencies or unexpected runtime
behavior. We are currently extending the RSDG representa-
tion to support more complex cost models, including highly
non-linear models. Furthermore, we are developing tools to
ease a developer’s effort to write RAPID applications.
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